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ABSTRACT

Increases in blood viscosity during various kinds of strenuous
exercise have been repeatedly described. In this study we
investigated the rheologic effects of long duration low intensity
exercise. Twelve volunteers (21-39 yr, 6 men and 6 women), after
overnight fasting, performed a 60 min exercise on cycloergometer at
55% of the theoretical maximal heart rate. After an early increase at
the 10th minute (p<0.001), blood lactate dicreases (p<0.02) and
returns to normal. During exercise there is an increase in plasma
viscosity (p<0.001) and hematocrit (p<0.05) at the 10th minute.
Red cell rigidity index "Tk" increases at the 20 th minute (p<0.05).
Whole blood viscosity (p<0.01) increases and hematocrit/viscosity
ratio decreases (p<0.01). Thus, a light prolonged work load induces
a transient hyperviscosity pattern very similar to that which is
observed during strenuous exercise bouts.
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INTRODUCTION

Increased physical activity is now considered as an important tool against
cardiovascular disease (1-3). While strenuous exercise is sometimes at risk for
acute cardiovascular accidents (4), low intensity prolonged exercise is
considered as a safe procedure for improving both lipidic and glucidic
metabolism and reducing atherogenetic abnormalities (5). Such a 'metabolic
fitness' may be clearly obtained by light muscular activity, such as walking at a
brisk pace, which represents 50% of the maximal aerobic power (6). Many
kinds of exercise have been shown to acutely impair blood rheology (7-12) but
we were not aware of studies concerning light prolonged exercise and rheology.
Therefore, we investigated the possible hemorheologic effects of 1 hr cycling at
55% of the maximal theoretical heart rate.

SUBJECTS AND METHODS

Exercise test

Twelve healthy volunteers (age: 21-39 yr, 6 men and 6 women) remained
fasting until they performed at 9 a.m. the exercise test. An indwelling catheter
was set in a superficial vein of the cubital fossa. Blood samples were drawn at
-15, 0, 10, 20, 30, 40, 50, 60 min as well as 10 min after stoping exercise
(time 70 min). Exercise-tests were performed on a bicycle ergometer
(Bodyguard, Jonas Oglaend A.S., N 4301- Sandnes, Norway). Heart rate was
continuously monitored with the impulses coming from three electrodes taped to
the subject's chest. Subjects exercised 1 hr at 55% of the maximal theoretical
heart rate given by the tables of the American Heart Association.

Hemorheological measurements

Blood samples for hemorheological measurements (7 ml) were obtained with a
large bore needle (Luer adaptor Venoject, set into the catheter) to avoid shear
damage to erythrocytes. A vacuum tube was used for blood withdrawal, with
potassium EDTA as the anticoagulant. No tourniquet was used for sample
drawing in order to minimize venous stasis. Viscometric measurements were
performed at high shear rate (1000 s-1) with a falling ball viscometer (MT 90
Medicatest, 37 rue de I'Ermitage F-86280 Saint Benoit) (13-15). Accuracy of
the measurements was regularly controlled with the Carrimed Rheometer 'CS'
(Rhéo, 19 rue Ambroise Croizat, 91120 Palaiseau, France). The coefficient of
variation of this method ranges between 0.6 and 0.8% (10 repetitive
measurementsof the same sample). We measured with this device apparent
viscosity of whole blood at native hematocrit, plasma viscosity, and blood
viscosity at corrected hematocrit (45%) according to the equation of Quemada

(16):
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ub = wpl . (1-1/2k.h)2

where us is blood viscosity, wupl plasma viscosity, h the hematocrit and k a
shear dependent intrinsic viscosity of the red cells according to Quemada.

Two indices of erythrocyte rigidity (Dintenfass’' 'Tk’ and Quemada’'s 'k') were
calculated from blood viscosity, hematocrit and plasma viscosity measured at
time O with equations derived from those given above:

k = 2.(1 - ur-0.5).h-1
and:

Tk = (ur0-4 - 1).(ur0-4.n)-1 (17)

Where ur is relative blood viscosity wb/upl. The hematocrit/viscosity ratio, an
index of oxygen supply to tissues, was calculated according to Chien (18) and
Stoltz (19), with h (as percentage) divided by ub value at high shear rate which
was determined as described above.

Biochemical analyses

The sampled blood was centrifuged and the plasma assayed for diverse
parameters by well standardized and routine techniques, on an automatic
clinical analizer (DuPont de Nemours). Both lactate and ammonia were assayed
with the kits from DuPont specially adapted to this analyzer. Blood lactate assay
was based on NADH production by rabbit lactate dehydrogenase. Coefficients
of variation range beween 0,7 and 5.6 %.

Changes in plasma volume

A formula for calculating plasma volume changes (% APV) during exercise from
hematocrit changes has been published by investigators of the NASA-Ames
Research Center (20,21,22) who demonstrated its validity in moderate as well
as maximal exercise. We applied this formula to our data. The equation is:

% A PV = 100/(100-Ho) x 100 [(Ho-H)/Ho]

where Ho is resting hematocrit and H hematocrit during exercise.

Statistics.

Results are presented as mean + the SE of the mean. Correlations were
performed using the method of least squares. Variables were compared using

the nonparametric test of Mann-Whitney and Wilcoxon. Significance was
defined as p<0.05. The choice of nonparametric tests was done in order to
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adhere the guidelines of the ICSH expert pannel for blood rheology (23), since
hemorheological parameters usually appear to exhibit a nonnormal distribution.

RESULTS

For reasons discussed elsewhere (15), viscosity values obtained with the MT90
viscometer are 1.3 fold lower than those leasured at the same shear rate with
the Carri-Med Rheometer. In this study, as well as our other ones, we did not
apply this correction factor. Comparison of our values with values that would be
given by a rotational viscometer can be made by multiplying the results by 1.3.
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FIG.1

Effects of light prolonged exercise on whole blood viscosity at native
hematocrit: * p<0.05 vs baseline.

Fig. 1 shows that blood viscosity increases during the test (p<0.05 at time 10
min). This increase is explained by an increase in hematocrit (fig. 2), plasma
viscosity (fig.3), and RBC rigidity (fig. 4). Blood viscosity at corrected
hematocrit 45% is also increased (+ 9.5% p<0.01). The hematocrit/viscosity
ratio is decreased at t 10 (-5.8 % p<0.01). Blood lactate increases from
baseline values of 1.83 + 0.22 mmol/l up to 2.57 + 0.29 mmol/l at 10 min and
then gradually decreases (fig. 5) to return within the resting range after 40 min.
Plasma volume changes calculated with the equation of Greenleaf showed a
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reduction of this volume (-6 to -7%) during all the session, followed by a
normalization at the 10th minute of recovery (fig. 6).
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FIG.2

Effects of light prolonged exercise on hematocrit. * p< 0.05 vs baseline.

There is a correlation between Tk and blood lactate (r=0.227 p<0.03) as
shown on fig. 7.

DISCUSSION

This study shows that very light exercise induces the same hemorheologic
changes which have been reported during strenuous work loads. A rise in
hematocrit, which indicates an outward movement of fluid from the vascular
bed to the interstitial space during muscular activity (22) is a classical finding,
even with a low intensity exercise (21). It was more surprising to notice that
when viscosity was corrected for hematocrit, its increased remained highly
significant, due to a rise in both plasma viscosity and red cell rigidity.

Since the red cell rigidity index "Tk" is correlated with blood lactate measured
thorought the test, a role for blood lactate in this increase in red cell rigidity can
be hypothesized, as previously published for stronger exercise protocols (12,
24, 25). Since both lactate (26) and acidosis (27) reduce red cell deformability,
such a mechanism is theoretically possible. However, the increase in lactate
observed during this protocol was moderate, far below the onset of metabolic
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Effects of light prolonged exercise on plasma viscosity . * p<0.05
*** n< 0.01 vs baseline.
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FIG.4
Effects of light prolonged exercise on RBC rigidity index 'Tk" . * p< 0.05 vs
baseline.
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acidosis (28). This kind of exercise is considered as an 'areobic' one in which
fatigue is more related to glycogenic depletion and hypoglycemia, while lactate
synthesis from pyruvate is not strongly stimulated (29). An early peak in blood
lactate above 2 mmol/l is probably due to a rapid glucose oxidation to pyruvate,
while the Krebs cycle becomes more slowly efficient (29). When the metabolism
reaches a steady state, lactate is no longer released, as indicated by its
progressive decline.
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FIG.5
Effects of light prolonged exercise on blood lactate. *** p< 0.01vs baseline.

Another mechanism which may improve blood rheology during prolonged
exercise is the oxidative stress induced by increased free radicals production
(30). However, the kinetics of our modifications of 'Tk' which appear early and
progressively return towards normal preexercise values, does not support this
hypothesis since oxidative stress is more likely to progressively increase with
the duration of exercise. Clearly, 'Tk' changes appear to be more parallel to the
transient lactate peak and we believe that the two phenomenons are related.

An interesting hypothesis has been proposed by M. Gueguen-Delamaire (9)
who suggested that impairment of blood rheology may be involved in the
cardiovascular risk of maximal exercise, together with changes in
hemocoagulatory parameters. Since we observe during this light, very safe
exercise quite the same rheologic changes than during strong work loads, we
think that these simple changes in hematocrit, red cell rigidity, and plasma
viscosity are physiological adaptative modifications which occur during many
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hematocrit/viscosity ratio, which measures the contribution of blood rheology to
02 supply (18-19) is slightly decreased, but such a change can be easily
overcome by vasodilatation. In our opinion, the risk of strong maximal or
exhausting work loads is probably more related to modifications of hemostasis
and to white cell activation.
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FIG.6
Changes in plasma volume caculated with the equations of Greenleaf
during the prolonged light exercise session.

In conclusion, light prolonged exercise protocols at 55 % of the theoretical
maximal heart rate induce the same hemorheologic modifications as strong short
work loads, i.e. an increase in blood viscosity explained by a rise in hematocrit,
plasma viscosity and erythrocyte rigidity. The latter event, which is transient
and rapidly returns to normal, is correlated with blood lactate and may be
related to its modifications during exercise.
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FIG.7

Correlation between Tk and blood lactate during the prolonged light exercise
session. r=0.227 p< 0.03.
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